Катехизис по Астрономии ч.2

Звезды и созвездия

Катехизис по Астрономии ч.2

ч.2

Звезды и созвездия

24. Что такое Звезда?

Современная Астрономия так определяет понятие: Звезда́.

Это массивный газовый шар, излучающий свет и удерживаемый в состоянии равновесия силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза

Ближайшей к Земле звездой является Солнце – типичный представитель спектрального класса G.

Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия.

Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности – тысячами кельвинов.

Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях.

Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе.

Невооружённым взглядом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. За исключением сверхновых, все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся[3] в местной группе галактик.

Виды звёзд

Звёзды главной последовательности

Коричневые карлики

Белые карлики

Красные гиганты

Переменные звёзды

Типа Вольфа – Райе

Типа T Тельца

Новые

Сверхновые

Гиперновые

Яркие голубые переменные

Ультраяркие рентгеновские источники

Нейтронные звёзды

Уникальные звезды

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд, то принято её называть звёздным скоплением. Двойные (кратные) звёзды очень распространены. По некоторым оценкам, более 70 % звёзд в галактике кратные[15]. Так, среди 32 ближайших к Земле звёзд 12 кратных, из которых 10 двойных (в том числе и самая яркая из визуально наблюдаемых звёзд – Сириус).

В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины – двойные звёзды всех типов.

Галактики

Галактика – это крупное скопление звёзд (чаще всего 10-50 Кпс в диаметре), межзвёздного газа и пыли, тёмной материи.

Звёздная эволюция

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает.

Когда температура в ядре достигает нескольких миллионов Кельвинов, начинаются реакции нуклеосинтеза, и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Рассела, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутренние, наоборот, сжимаются. И до поры до времени яркость звезды тоже снижается. Температура поверхности снижается – звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности.

Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Звёздные каталоги и принципы обозначения звёзд

В нашей галактике более 200 млрд звёзд.

На фотографиях неба, полученных крупными телескопами, видно такое множество звёзд, что бессмысленно даже пытаться дать им всем имена или хотя бы сосчитать их.

Поэтому только около 0,01 % всех звёзд Галактики занесено в каталоги.

Таким образом, подавляющее большинство звёзд, наблюдаемых в крупные телескопы, пока не обозначено и не сосчитано.

Самые яркие звёзды у каждого народа получили свои имена.

Многие из ныне употребляющихся, например, Альдебаран, Алголь, Денеб, Ригель и др., имеют арабское происхождение; культура арабов послужила мостом через интеллектуальную пропасть, отделяющую падение Рима от эпохи Возрождения.

Дополнительные сведения по п.24 читатель самостоятельно может найти перейдя вот по данной ссылке https://ru.wikipedia.org/wiki/%D0%97%D0%B2%D0%B5%D0%B7%D0%B4%D0%B0

25. Что такое Созвездия?

Созве́здия – в современной астрономии участки, на которые разделена небесная сфера для удобства ориентирования на звёздном небе. В древности созвездиями назывались характерные фигуры, образуемые яркими звёздами.

Звёзды, видимые на небесной сфере на небольших угловых расстояниях друг от друга, в трёхмерном пространстве могут быть расположены очень далеко друг от друга. Таким образом, в одном созвездии могут быть и очень близкие, и очень далёкие от Земли звёзды, никак друг с другом не связанные.

До XIX века под созвездиями понимались не области неба, а группы звёзд, которые нередко перекрывались. При этом получалось, что некоторые звёзды принадлежали сразу двум созвездиям, а некоторые бедные звёздами области не относились к какому-либо созвездию.

В начале XIX века между созвездиями были проведены границы на небесной сфере, ликвидировавшие “пустоты” между созвездиями, однако их чёткого определения по-прежнему не было, и разные астрономы определяли их по-своему.

25. Сколько имеется Созвездий?

В зависимости от остроты зрения наблюдателя невооруженным глазом в безлунную ясную ночь можно различить 2500-3000 звезд над горизонтом места наблюдения.

Вся небесная сфера содержит около 6000 звезд, видимых простым глазом.

Взаимное расположение звезд на небе меняется чрезвычайно медленно, его изменения можно было бы подметить невооруженным глазом лишь по истечении тысячелетий.

Для удобства ориентировки на звездном небе еще астрономы древности разделили его на созвездия.

Разделение это носит чисто условный характер и не свидетельствует о наличии каких-либо физических связей между созвездиями и звездами в них.

Звезды, принадлежащие к одному и тому же созвездию, кажутся близкими только в плоскости, перпендикулярной лучу зрения земного наблюдателя.

В действительности они могут быть как угодно далеки друг от друга. Надо также иметь в виду, что к созвездию относятся все звезды, которые попадают в его границы, в том числе и невидимые невооруженным глазом.

В 1922 году на первом конгрессе Международного астрономического союза весь небосвод Северного и Южного полушарий Земли был разделен на 88 участков (созвездий) с точно указанными границами.

Извилистые и причудливые границы созвездий, намеченные древними астрономами, заменены новыми. Они идут вдоль небесных параллелей и кругов склонения, хотя при их проведении в общем придерживались очертаний старых границ.

Значение деления неба на созвездия для наблюдательной астрономии заключается в том, что характерные контуры, состоящие из наиболее ярких звёзд, легко запомнить, что позволяет, зная, в каком созвездии находится объект, быстрее найти его.

В астрономических энциклопедиях и календарях приводится полный список созвездий, где указаны русское и латинское название созвездия, его символическое обозначение, площадь, занимаемая созвездием на небе (в квадратных градусах), и число звезд ярче 6-й звездной величины (то есть видимых невооруженным глазом при отличном зрении и отличных условиях наблюдения).

А затем уже в 1928 году были приняты чёткие и однозначные границы между этими созвездиями, проведённые строго по линиям постоянного прямого восхождения и линиям постоянного склонения в экваториальной системе небесных координат на эпоху 1875.0

В течение пяти лет в границы созвездий вносились уточнения.

В 1935 году границы были окончательно утверждены, и астрономы договорились, что больше изменять их не будут.

Из 88 созвездий только 47 являются древними, известными западной цивилизации уже несколько тысячелетий.

Они охватывают область неба, доступную наблюдениям с юга Европы.

Остальные современные созвездия были введены в XVII-XVIII веках в результате изучения южного неба (в эпоху великих географических открытий) и заполнения “пустых мест” на северном небе.

26. Как созвездия получили свои названия?

Из 88 современных созвездий многие известны довольно давно ибо еще в IV веке до нашей эры древнегреческий астроном Евдокс назвал 45 созвездий, однако некоторые из этих названий упоминаются уже в творениях Гомера (между XII и VII веками до нашей эры), Гесиода (VIII-VII века до нашей эры) и Фалеса (около 625-547 до нашей эры).

Есть также основания считать, что большинство названий созвездий достались грекам в наследство от еще более древних цивилизаций.

Это подтверждается находкой в Месопотамии нескольких табличек, относящихся к аккадской цивилизации. На них значатся названия некоторых созвездий, упоминаемых в дальнейшем греческими поэтами.

В 150 году нашей эры древнегреческий астроном Клавдий Птолемей описал уже 48 созвездий:

Большая Медведица, Малая Медведица, Дракон, Цефей, Боотес (Волопас), Северный Венец, Человек на коленях (Геркулес), Лира (или Падающий Ястреб), Птицы (или Лебедь), Кассиопея, Персей, Возничий, Офиух (Змееносец), Змея, Стрела, Орел, Дельфин, Малый Конь (Пегас), Андромеда, Голова Коня, Северный Треугольник, Телец, Овен, Рыбы, Водолей, Козерог, Стрелец, Скорпион, Весы, Дева, Лев, Рак, Близнецы, Кит, Орион, Река Эридан, Заяц, Большой Пес, Малый Пес, Корабль Арго, Гидра, Чаша, Ворон, Алтарь, Кентавр (Центавр), Зверь (Волк), Южный Венец и Южная Рыба.

Большинство названий, имеющих мифологическое происхождение, римляне позаимствовали у греков и перевели их на латинский язык.

К ним относятся преимущественно созвездия Северного полушария неба.

Южное полушарие неба стали “осваивать” лишь в XVI веке, в эпоху великих географических открытий.

Именно тогда появились такие экзотические названия созвездий, как Павлин, Тукан, Журавль, Феникс, Летучая Рыба, Южная Гидра, Золотая Рыба, Хамелеон, Райская Птица, Южный Треугольник, Индеец.

К концу XVII века в списке созвездий появились Жираф, Муха, Единорог, Голубь, Гончие Псы, Лисичка, Ящерица, Секстант, Малый Лев, Рысь, Щит, Южная Корона. В 1753 году французский аббат Никола Луи де Лакайль дополнил перечень еще 14 созвездиями южного неба: Скульптор, Печь, Часы, Сетка, Резец, Живописец, Жертвенник, Компас, Насос, Октант, Циркуль, Телескоп, Микроскоп, Столовая Гора.

Любопытно, что в XVII-XVIII веках некоторые астрономы пытались по разным соображениям (в том числе верноподданническим) утвердить на небе новые созвездия.

Так появились Дуб Карла, Арфа Георга, Вол Понятовского (польского короля Станислава Понятовского), Регалии Фридриха II.

27. Какие созвездия называются Зодиакальными и почему?

Зодиакальными называют 12 созвездий, расположенных вдоль видимого годового пути Солнца среди звезд: Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей, Рыбы.

Небольшую часть своего пути (с 30 ноября по 18 декабря) Солнце проходит по созвездию Змееносца, которое, однако, к зодиакальным созвездиям не причисляют – вероятно, из-за того, что число 12 лучше соотносится с количеством месяцев в году.

Область, в которой лежат зодиакальные созвездия, называют зодиакальным кругом, или зодиаком (греч. zddiakos – животное).

Происхождение этого названия связано с тем, что большинство зодиакальных созвездий еще с древних времен носит названия животных. Ч6рез зодиакальные созвездия проходят также видимые пути Луны, планет и большинства астероидов.

28. Чем Знаки Зодиака отличаются от Зодиакальных Созвездий?

Зодиакальные созвездия различны по величине, что вызывает определенные неудобства при определении движения Солнца, Луны и планет по отношению к ним.

Поэтому в древности астрономы разделили зодиакальный круг на 12 одинаковых областей (по 30 градусов долготы) и определили каждой из них Знак Зодиака по названию ближайшего зодиакального созвездия.

В IV веке до нашей эры положение зодиакальных знаков было закреплено в Древней Греции по отношению к точкам равноденствия.

За исходную точку зодиака было принято весеннее равноденствие (21 марта).

А поскольку Солнце в те времена оказывалось в этот день в созвездии Овна, то Овен и стал первым знаком зодиака.

Но со временем из-за прецессии точек равноденствия ситуация постепенно менялась.

В настоящее время точка весеннего равноденствия находится в созвездии Рыб, а к 2600 году она переместится в созвездие Водолея.

Поскольку зодиакальные знаки остаются привязанными к зафиксированной еще древними греками дате, то в настоящее время Солнце отстает от соответствующего знака зодиака на одно созвездие (приблизительно на один месяц)!

Поэтому сегодня Знаками Зодиака в своей практической деятельности пользуются только астрологи – при составлении гороскопов но в силу своей поголовной астрологической безграмотности в своих гороскопах не учитывают месячное отставание нашего Солнца от соответствующего знака зодиака.

Что еще более нивелирует всяческую практическую ценность подобных “гороскопов”!

29. Что собой представляет созвездие Большой Медведицы?

Больша́я Медве́дица (лат. Ursa Major) – созвездие северного полушария неба. Семь звёзд Большой Медведицы составляют фигуру, напоминающую ковш с ручкой. Две самые яркие звезды – Алиот и Дубхе – имеют блеск 1,8 видимой звёздной величины. По двум крайним звёздам этой фигуры (α и β) можно найти Полярную звезду. Наилучшие условия видимости – в марте-апреле.

Видно на всей территории России круглый год (за исключением осенних месяцев на юге России, когда Большая Медведица спускается низко к горизонту).

Большая Медведица – третье по площади созвездие (после Гидры и Девы), семь ярких звёзд которого образуют известный Большой Ковш; этот астеризм известен с древности у многих народов под разными названиями: Коромысло, Плуг, Лось, Повозка, Семь Мудрецов и т. п.

Все звёзды Ковша имеют собственные арабские имена:

Дубхе (α Большой Медведицы) значит “медведь”;

Мерак (β) – “поясница”;

Фекда (γ) – “бедро”;

Мегрец (δ) – “начало хвоста”;

Алиот (ε) – смысл не ясен (но, вероятнее всего, это название обозначает “курдюк”);

Мицар (ζ) – “кушак” или “набедренная повязка”.

Последнюю звезду в ручке Ковша называют Бенетнаш или Алькаид (η); по-арабски “аль-каид банат наш” значит “предводитель плакальщиц”. Этот поэтический образ взят из арабского народного осмысления созвездия Большой Медведицы.

В системе обозначения звёзд греческими буквами порядок букв просто соответствует порядку звёзд.

Другой вариант трактовки астеризма отражен в альтернативном названии Катафалк и Плакальщицы. Здесь астеризм мыслится похоронной процессией: впереди плакальщицы, возглавляемые предводителем, за ними погребальные носилки. Это даёт объяснение названию звезды η Большой Медведицы “предводитель плакальщиц”.

5 внутренних звёзд Ковша (кроме крайних α и η) действительно принадлежат единой группе в пространстве – движущемуся скоплению Большой Медведицы, которое довольно быстро перемещается по небу;

Дубхе и Бенетнаш движутся в другую сторону, поэтому форма Ковша существенно меняется примерно за 100000 лет.

Звёзды Мерак и Дубхе, образующие стенку Ковша, называют Указателями, поскольку проведённая через них прямая упирается в Полярную звезду (в созвездии Малой Медведицы). Шесть звёзд Ковша имеют блеск 2-й звёздной величины и только Мегрец – 3-ей.

Мицар был второй среди двойных звёзд, обнаруженных в телескоп итальянским астрономом Джованни Риччоли в 1650 году.

Однако, согласно исследованиям чешского астронома Леоша Ондры (Leos Ondra), Мицар, вероятно, наблюдался как двойная ещё в 1617 году Галилеем.

В этом году Бенедетто Кастелли в своём письме предложил Галилею, проявлявшему в то время большой интерес к наблюдению звёзд, взглянуть на Мицар; сохранилось недатированное описание Галилея наблюдения им Мицара как двойной звезды.

Рядом с Мицаром зоркий глаз видит звезду 4 величины Алькор (80 Большой Медведицы), что по-арабски значит “забытая”, или “незначительная”.

Считается, что способность различить звезды Мицар и Алькор с древнейших времён была тестом для проверки зоркости! Ведь Мицар и Алькор различимы как отдельные звёзды даже при средней остроте зрения, которой обладают люди с миопией до 1 диоприи без патологий сетчатки

Большая Медведица занимает третье место среди созвездий по площади, однако там найдено необычно мало переменных звёзд – на 2011 год она не входит в первые десять созвездий по этому показателю.

Дополнительная информация по п.29 находится тут:

https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D0%BB%D1%8C%D1%88%D0%B0%D1%8F_%D0%9C%D0%B5%D0%B4%D0%B2%D0%B5%D0%B4%D0%B8%D1%86%D0%B0

30. Как связаны между собой семь самых ярких звезд, составляющих созвездие Большая Медведица?

Семь самых ярких звезд созвездия Большой Медведицы условно составляют композицию, очертанием напоминающую ковш.

Она настолько отчетливо выделяется в ночном небе Северного полушария, что с этого “небесного ковша” все любители Астрономии обычно и начинают изучение созвездий.

Все члены этого семизвездия как я уже выше сообщал имеют собственные названия, данные им средневековыми арабскими астрономами: Дубхе (альфа Большой Медведицы), Мерак (бета Большой Медведицы), Фекда (гамма Большой Медведицы), Мегрец (дельта Большой Медведицы), Алиот (эпсилон Большой Медведицы), Мицар (кси Большой Медведицы) и Бенетнаш, она же Алкаид (эта Большой Медведицы).

В проекции на воображаемый небосвод крайние звезды – Дубхе и Бенетнаш – стремительно летят в одном направлении, а остальные звезды – в противоположном. Следствием этого факта является чрезвычайно медленное для земного наблюдателя, но непрерывное изменение формы ковша.

Мерак, Фекда, Мегрец, Алиот и Мицар сходны по физическим свойствам и летят не только в одну сторону, но и почти с одинаковой скоростью.

Они не случайные попутчики в пространстве, а звездный поток, то есть образование из звезд, имеющих, по-видимому, общее происхождение!

Желтый гигант Дубхе и голубая звезда Бенетнаш никак не связаны ни с остальными пятью звездами ковша, ни друг с другом.

31. Как велики размеры звезд?

В силу чрезвычайной удаленности звезд ни в какой телескоп нельзя увидеть звезду как шарик заметных размеров.

Однако диаметр звезды можно приближенно оценить на основе связи между ее размером, светимостью и температурой поверхности. Согласно таким оценкам, диаметр Альдебарана (альфа Тельца) в 36 раз, диаметр Арктура (альфа Волопаса) в 22 раза, а диаметр Капеллы (альфа Возничего) в 16 раз больше диаметра Солнца.

Но это далеко не предел размера гигантов звездного мира – диаметр Бетельгейзе (альфа Ориона) больше солнечного в 300-400 раз, а диаметры двух одинаковых компонентов затменно-двойной звезды VV Цефея – в 1200 раз.

В то же время один из наименьших белых карликов, звезда Вольф 457, имеет диаметр в 300 раз меньше солнечного, или почти втрое меньше земного. Диаметр голубой звезды, открытой Лейтеном в созвездии Кита (обозначение LP 768-500), в 10 раз меньше земного и приблизительно равен поперечнику астероида Церера. Таким образом, самая большая звезда по диаметру больше самой маленькой приблизительно в миллион раз. А если учесть, что нейтронные звезды имеют диаметры порядка 10 километров, то отношение увеличивается до миллиарда раз.

32. Что надо знать о нашей звезде по имени Солнце?

Со́лнце (астр. ☉) – единственная звезда Солнечной системы.

Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

По спектральной классификации Солнце относится к типу G2V (жёлтый карлик). Средняя плотность Солнца составляет 1,4 г/см³.

Эффективная температура поверхности Солнца – 5780 кельвин.

Поэтому Солнце светит почти белым светом, но прямой свет Солнца у поверхности нашей планеты приобретает некоторый жёлтый оттенок из-за более сильного рассеяния и поглощения коротковолновой части спектра атмосферой Земли (при ясном небе, вместе с голубым рассеянным светом от неба, солнечный свет вновь даёт белое освещение).

Солнечное излучение поддерживает жизнь на Земле (свет необходим для начальных стадий фотосинтеза), определяет климат.

Солнце состоит из водорода (≈73 % от массы и ≈92 % от объёма), гелия (≈25 % от массы и ≈7 % от объёма[9]) и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома.

. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неона, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, по 2 атома никеля, натрия и кальция, а также малое количество прочих элементов. Масса Солнца составляет 99,87 % от суммарной массы всей Солнечной системы.

Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также водорода и гелия.

В нашей галактике Млечный Путь насчитывается свыше 100 миллиардов звёзд[11]. При этом 85 % звёзд нашей галактики – это звёзды, менее яркие, чем Солнце (в большинстве своём красные карлики).

Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода.

Солнце – ближайшая к Земле звезда!

Средняя удалённость Солнца от Земли – 149,6 млн км – приблизительно равна астрономической единице, а видимый угловой диаметр при наблюдении с Земли, как и у Луны, – чуть больше полградуса (31-32 минуты).

Но современному человеку так же важно т знать и осознавать и следующие цифры показывающие нам всю крайнюю степень нестабильности существования нашей цивилизации!

Ведь мало того, что наша планета Земля эта по сути песчинка среди всех планет даже нашей Галактики “Млечный путь” которая вращается с большой скоростью вокруг себя, а затем еще и вокруг Солнца, так она вместе с нами всеми (Человечеством) являясь привязанной к Солнцу вместе с ним одновременно несется в безбрежных просторах Вселенной где в любой момент Земля может быть подвержена воздействию неизвестных нашей науке разрушительных космических сил. Скажем влиянию “рассеянного высокотемпературного газа”…

Вот судите сами.

Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот за 225-250 миллионов лет.

Орбитальная скорость Солнца равна 217 км/с – таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу – за 8 земных суток.

В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом “Местном межзвёздном облаке” – области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность “Местном пузыре” – зоне рассеянного высокотемпературного межзвёздного газа.

Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m

Дополнительная информация по п.32 https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D1%86%D0%B5

33.Что представляют собой солнечные пятна?

Солнечными пятнами называют темные образования на диске Солнца. У хорошо развывшегося пятна заметна темная тень (ядро), окруженная более светлой полутенью, в которой видны радиально расположенные светлые прожилки.

Тень кажется очень темной только по контрасту с ослепительно яркой видимой поверхностью (фотосферой) Солнца, однако сами по себе пятна светят очень ярко, так как их температура достаточно высока (4300-4700 градусов Кельвина, то есть на 1000-1500 градусов ниже температуры фотосферы). Однажды наблюдалось пятно, имевшее температуру “всего” 3680 кельвинов. Температура тени составляет около 5500 кельвинов. Солнечные пятна горячее расплавленной стали и ярче электрической дуги.

Мельчайшие солнечные пятна – так называемые поры – имеют диаметры в несколько сотен километров, диаметр больших пятен достигает 100 тысяч километров. Изредка появляются гигантские пятна.

Так, например, с 8 по 17 марта 1947 года наблюдалось пятно сложной формы длиной 214 600 километров. Чем больше площадь пятна, тем оно долговечнее. У солнечных пятен обнаружено сильное магнитное поле.

Прохождение больших пятен или групп пятен через центральный меридиан Солнца зачастую сопровождается магнитными бурями на Земле. Пятна перемещаются от восточного края Солнца к западному, демонстрируя тем самым вращение Солнца вокруг своей оси; одновременно они и сами несколько передвигаются по солнечной поверхности. Доля видимой поверхности Солнца, покрытая пятнами, является характеристикой солнечной активности.

Весьма интересно, что наблюдения за солнечными пятнами стали одной из причин краха аристотелевско-птолемеевской модели Вселенной, согласно которой звезды являются идеальными неделимыми сферами

34. Что представляют собой вспышки на Солнце?

Солнечные вспышки – это сильные взрывы, охватывающие значительные области поверхностного слоя Солнца.

Вспышки обычно появляются в центрах солнечной активности (например, в группе пятен, иногда между двумя пятнами, составляющими магнитную пару) и проявляют себя резкими повышениями яркости. Длительность вспышек обычно составляет десятки минут, а порой доходит до часа. Но фаза, в которой выделяется основная часть энергии, длится считаные минуты и соотносится с наибольшей яркостью.

Вспышки на Солнце – самое мощное из всех проявлений солнечной активности. Энергия большой вспышки приблизительно в 100 раз превышает тепловую энергию, которую можно было бы получить при сжигании всех запасов нефти и угля на Земле. Однако при этом мощность вспышки не превышает сотых долей процента от мощности полного излучения нашего светила, и заметного увеличения светимости Солнца не происходит.

Вспышки вызывают резкое увеличение ультрафиолетового и рентгеновского излучения Солнца, а также потока заряженных частиц, скорости которых достигают 1000 километров в секунду и более.

Достигнув через несколько часов нашей планеты, эти частицы порождают полярные сияния и электромагнитные бури, которые подчас приводят к нарушениям функционирования телекоммуникационных сетей и устройств. Так, например, 2 сентября 1967 года яркая вспышка на Солнце вызвала почти двухчасовое прекращение радиосвязи на всей Земле.

35. Что такое протуберанцы?

Протуберанцы – самые грандиозные из всех образований в солнечной атмосфере. Типичный протуберанец имеет вид гигантской светящейся арки, образованной струями более плотной и менее горячей, чем окружающая солнечная корона, плазмы. По виду протуберанцев, по скорости и особенностям движения вещества в них различают спокойные, активные и эруптивные протуберанцы.

Спокойные протуберанцы отличаются медленным движением и изменением формы; время их существования – недели и даже месяцы. Активные протуберанцы характеризуются довольно быстрыми движениями потоков вещества от протуберанца к фотосфере, от одного протуберанца к другому.

Эруптивные (“взлетающие”) протуберанцы по виду напоминают громадные фонтаны, извергающиеся со скоростью в сотни километров в секунду и довольно быстро меняющие свои очертания; существуют они недолго – от нескольких минут до нескольких часов. При толщине 5- 10 тысяч километров протуберанец может иметь высоту в десятки тысяч километров. Некоторые эруптивные протуберанцы достигают высоты 1,7 миллиона километров над поверхностью Солнца (весьма впечатляющее зрелище, если учесть, что радиус нашего светила чуть меньше 700 тысяч километров).

35.Что такое солнечный ветер?

На исходе 1940-х годов проницательные астрофизики пришли к выводу, что Солнце должно собирать газ из межзвездного пространства, а потому смело предсказали существование ветра, дующего в сторону Солнца. Вскоре реальность солнечного ветра была подтверждена, однако с небольшой поправкой: ветер дует не к Солнцу, а от него. Вместо того чтобы собирать газ из межзвездного пространства, Солнце выбрасывает во все стороны свое вещество со скоростью миллион тонн в сутки.

Солнечный ветер представляет собой постоянное радиальное истечение плазмы солнечной короны в космическое пространство (почти в вакуум). Частицы солнечного ветра, преодолевая солнечное притяжение, движутся от Солнца с постепенно нарастающей скоростью – их “подталкивает” более горячий газ. В основании короны (на расстоянии около 20 тысяч километров от поверхности Солнца) их радиальная скорость составляет несколько сотен метров в секунду, на расстоянии нескольких радиусов от Солнца они достигают скорости 100-150 километров в секунду.

Вблизи Земли скорость солнечного ветра равна приблизительно 400 километрам в секунду, а плотность – 10 частицам на кубический сантиметр, то есть в миллиард миллиардов раз ниже, чем плотность земной атмосферы при нормальном давлении. Солнечный ветер состоит главным образом из протонов и электронов, но в нем присутствуют также ядра гелия и других элементов.

36. Как велики скорость и период обращения Солнца относительно галактического центра?

Солнце, находясь на расстоянии около 26 тысяч световых лет от центра Галактики, обращается вокруг него с периодом около 220 миллионов лет и скоростью около 220 километров в секунду. При этом наше светило одновременно перемещается внутри Галактики (относительно ближайших звезд) со скоростью 19,5 километра в секунду в направлении созвездия Геркулеса.

37.Какими бывают солнечные затмения?

По особенностям наблюдаемой картины солнечные затмения подразделяют на частные, полные и кольцеобразные. Как известно, Луна движется вокруг Земли по орбите, плоскость которой составляет угол около 5 градусов с плоскостью эклиптики, по которой сама Земля обращается вокруг Солнца.

Из-за этого наклона орбиты Луна чаще всего проходит между Солнцем и Землей таким образом, что ее тень оказывается либо выше, либо ниже земного шара. Когда тень все же попадает на Землю, центр Луны для земного наблюдателя может не совпасть с центром солнечного диска, и тогда Луна закрывает не весь солнечный диск, а только его часть. Такие затмения называют частными.

Они случаются чаще полных и кольцевых, но обычно проходят незамеченными, поскольку ослабление на несколько минут солнечного света даже вдвое почти незаметно для человеческого глаза.

В тех редких случаях, когда при прохождении Луны между Солнцем и Землей центры всех трех небесных тел оказываются на одной прямой, имеет место центральное солнечное затмение, которое можно наблюдать либо как полное, либо как кольцеобразное. Хотя угловые размеры Солнца и Луны почти одинаковы, они несколько меняются из-за эллиптичности земной и лунной орбит.

Поэтому возможны ситуации, когда угловой диаметр Луны превышает солнечный и, наоборот, когда угловой диаметр Солнца больше лунного. Если при центральном затмении имеет место первая из этих двух ситуаций, то в момент середины затмения Луна полностью закрывает солнечный диск от земного наблюдателя. Такое солнечное затмение называется полным.

Если же угловой диаметр Солнца больше лунного, то в момент середины затмения земной наблюдатель видит черный диск Луны, окруженный сверкающим кольцом солнечного края. Такое солнечное затмение называют кольцеобразным. Очевидно, что ширина этого кольца будет наибольшей в том случае, если в момент солнечного затмения Земля находится в перигелии (ближайшей к Солнцу точке своей орбиты), а Луна – в апогее (наиболее удаленной от Земли точке своей орбиты).

Как велика сила притяжения Солнца, удерживающая Землю на орбите вокруг него?

Гравитационная сила, удерживающая Землю на орбите вокруг Солнца, равна 35 секстиллионам ньютонов (секстиллион – число, изображаемое единицей с 21 нулем). Эта сила могла бы разорвать стальной трос диаметром 3000 километров.

39.Во сколько раз Солнце больше Земли?

Радиус Солнца составляет 696 тысяч километров, а средний радиус Земли – 6371 километр. Отсюда следует, что Солнце больше Земли по линейным размерам приблизительно в 109 раз, а по объему – в 1,3 миллиона раз.

Масса Солнца равна 2 триллионам квардиллионов (двойка с 27 нулями) тонн, а масса Земли составляет “всего лишь” 6 секстиллионов (шестерка с 21 нулем) тонн. Следовательно, по массе Солнце больше Земли в 333 тысячи раз.

Гравитационное ускорение на поверхности Солнца равно 274 метрам в секунду за секунду и в 28 раз превышает гравитационное ускорение на поверхности Земли, равное, как всем известно, 9,81 метра в секунду за секунду. Поэтому любой предмет на поверхности Солнца будет весить в 28 раз больше, чем он весит на поверхности Земли (если, конечно, не сгорит).

40. Какое будущее ожидает наше светило Солнце?

Солнце образовалось около 5 миллиардов лет назад и вот уже по крайней мере 4,5 миллиарда лет, благодаря реакциям превращения водорода в гелий, протекающим в его центральных областях, устойчиво излучает благодатное для нас, обитателей Земли, тепло. Согласно современным астрофизическим представлениям, через 8 миллиардов лет Солнце станет красным гигантом. При этом его светимость увеличится в сотни раз, а радиус – в десятки.

Эта стадия эволюции нашего светила займет несколько миллионов лет, после чего разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Удивительно, что еще в 1895 году, задолго до возникновения теоретической астрофизики, наличие стадии красного гиганта в эволюции Солнца предсказал английский писатель Герберт Уэллс в своем романе “Машина времени”, открывшем историю современной научной фантастики.

Передвигаясь во времени “огромными шагами, каждый в тысячу лет и больше”, герой романа наблюдал, как Солнце “становится все огромнее и тусклее”, а затем “огромный красный купол Солнца заслонил собой десятую часть потемневших небес”.

41.Что представляет собой самая известная после нашего Солнца звезда – Полярная?

Полярная звезда – самая яркая звезда в созвездии Малой Медведицы и расположена на конце ее “хвоста”. Находится она на расстоянии приблизительно 450 световых лет от нас и имеет видимую звездную величину около двух. Полярная звезда – желтый сверхгигант – превышает

Солнце по массе примерно в 10 раз, а по радиусу – в 70 раз. Температура ее поверхности составляет около 7000 градусов – лишь немного выше, чем у Солнца, – но светит она примерно в 5000 раз мощнее его.

В 1780 году Уильям Гершель обнаружил, что Полярная звезда является двойной: второй компонент системы – желтовато-белая звезда 9-й звездной величины лишь немного крупнее Солнца. Основной компонент системы – цефеида, переменность которой в прошлом составляла 0,12 звездной величины с периодом чуть меньше четырех суток, однако в середине 1990-х годов сократилась до 0,02 звездной величины.

Это означает, что звезда миновала фазу пульсаций и перешла в практически стабильное состояние. Полярная звезда приближается к Солнцу со скоростью приблизительно 17 километров в секунду.

Дополнительные сведения по п.41 находятся тут:

https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F_%D0%B7%D0%B2%D0%B5%D0%B7%D0%B4%D0%B0

42. Чем замечательна звезда Тубан в созвездии Дракона?

Звезда Тубан (альфа Дракона) расположена на небосводе на полпути между Мицаром (кси Большой Медведицы) и парой ярких звезд (бета и гамма) ковша Малой Медведицы. Она играла роль Полярной звезды 4600 лет назад и снова будет играть ту же роль через 20 тысяч лет.

В 2600 году до нашей эры Тубан находился всего в 10 угловых минутах от Северного полюса мира. Для сравнения: минимальный угол между Полярной звездой и Северным полюсом мира будет достигнут в 2102 году и составит 27,5 угловой минуты.

43.В чем состоит источник звездной энергии?

По современным представлениям основным источником звездной энергии служат реакции термоядерного синтеза, протекающие в недрах звезд и сопровождающиеся выделением огромного количества энергии. Главную роль здесь играет превращение водорода (самого распространенного во Вселенной элемента) в гелий.

Этот процесс может идти двумя путями, первым из которых является последовательное присоединение друг к другу четырех протонов (ядер водорода) и объединение их в ядре гелия (протон-протонная реакция).

Второй путь процесса термоядерного синтеза состоит в присоединении протонов к более сложным ядрам, начиная с ядра углерода, с последующим распадом образовавшегося нового сложного ядра на ядро углерода и гелия (углеродный цикл). Протон-протонная реакция играет решающую роль при температурах менее 16 миллионов градусов Кельвина; при более высоких температурах преобладает углеродный цикл. С ростом температуры до 100 миллионов кельвинов возможно выделение энергии при образовании ядер углерода непосредственно из ядер гелия (гелиевая реакция).

44. Какие звезды называют новыми?

В астрономии считается, что каждый год в Галактике вспыхивает 25-30 (по некоторым оценкам, даже более 200) новых звезд, хотя наблюдаются лишь несколько из них.

С этим можно согласится если принять во внимание одно важное обстоятельство, мы жители планеты Земля всего лишь наблюдаем то, что где то во Вселенной произошло спустя десятки миллиардов лет! Ведь все это время свет (космические излучения) только шел в нашу Галактику и достигнули нашей планеты Земля!

Тем не менее современная Астрономия достаточно много собрана о “новых” звездах сведений чтобы их обобщить и оценить с научной точки зрения.

Для новых характерно чрезвычайно быстрое возрастание блеска в тысячи и даже миллионы раз (в среднем на 12 звездных величин, то есть в 60 тысяч раз) в течение нескольких суток и последующее медленное возвращение к начальному состоянию в течение нескольких месяцев или лет (сначала падение блеска звезды более быстрое, а затем оно замедляется).

Новая – это двойная звезда, одним компонентом которой является белый карлик, а вторым – либо звезда типа Солнца, либо красный гигант.

Период обращения компонентов этой двойной звезды составляет всего несколько часов, а следовательно, расстояние между ними достаточно мало и силы взаимодействия достаточно велики. Когда второй компонент такой двойной звезды в ходе своей эволюции расширяется, переходя определенную границу (так называемый предел Роша), часть его вещества перетекает на белый карлик.

При этом на поверхности белого карлика создаются такие температура и давление, что ядерная реакция приобретает взрывной характер, чем и объясняется резкое увеличение блеска звезды.

Расширившаяся (раздувшаяся) в сотни тысяч раз звезда отделяет в момент максимума блеска газовую оболочку, равную по массе 0,00001-0,0001 массы Солнца. Та, постепенно расширяясь, рассеивается в пространстве.

Скорость расширения оболочек новых составляет около 1000 километров в секунду. Отличительным свойством многих новых звезд является повторяемость их вспышек. Интервалы между вспышками у повторных новых составляют от нескольких десятков до нескольких тысяч лет (они больше у тех повторных новых, которые сильнее увеличивают блеск). Внешне новые похожи на сверхновые, хотя в целом речь идет о совершенно разных явлениях и выделяемая при взрыве энергия меньше в миллион раз.

44. Какие звезды называют Сверхновыми?

Самая большая катастрофа, происходящая со звездой, – это вспышка сверхновой.

Она возникает на заключительной стадии эволюции звезд большой массы – гигантов и сверхгигантов.

Во время мощнейших взрывов за несколько секунд высвобождается количество энергии, сопоставимое с энергией, испущенной звездой за всю ее жизнь.

При вспышке сверхновой ее светимость возрастает на десятки звездных величин. В максимуме своего блеска сверхновая может быть ярче всей звездной системы, в которой она вспыхнула. Так, сверхновая звезда, вспыхнувшая в 1937 году в галактике IC4182, в 100 раз превосходила по яркости эту галактику.

Сверхновая звезда, вспыхнувшая в нашей Галактике в 1054 году, была хорошо видна даже днем. В результате чего и образовалась так называемая “Крабовидная туманность” Дополнительные сведения по ней можно найти тут:

https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B0%D0%B1%D0%BE%D0%B2%D0%B8%D0%B4%D0%BD%D0%B0%D1%8F_%D1%82%D1%83%D0%BC%D0%B0%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C

Взрыв этой сверхновой, которой наблюдался, согласно записям арабских и китайских астрономов, произошел 4 июля 1054 года. Сама вспышка была видна на протяжении 23 дней невооружённым глазом даже в дневное время и это излучение которому почти месяц подвергались люди имело для населения планеты Земля одно важное но крайне негативное последствие.

16 июля 1054 года, три папских легата действовавшие от имени Папы Льва IX, вошли в собор Святой Софии в Константинополе и положили на алтарь отличительную грамоту, предающую анафеме патриарха Константинопольского Михаила Керулария В ответ на это 20 июля патриарх предал анафеме легатов. Так и состоялся раскол единой христианской религии на две враждебные ветви: католицизм и православие! НО это так небольшое авторское замечание по вопросу о влиянии Звезд на жизнь людей!

А продолжая наш рассказ о сверхновых надо сказать, что они подобно новым звездам, блеск сверхновых после максимума постепенно (но в несколько раз медленнее и более плавно) уменьшается. Спектр сверхновой свидетельствует о грандиозных скоростях расширения – несколько тысяч километров в секунду. Причиной взрыва сверхновой является гравитационный коллапс звезды.

Сверхновые играют очень важную роль в эволюции Вселенной, потому что во время взрыва образуется ударная волна, способствующая уплотнению звездорождающих туманностей.

Кроме того, они выбрасывают в космос составляющую их материю, что меняет состав межзвездной среды, обогащая ее металлами. И наконец, во время взрыва звезда не исчезает полностью: из сверхновых образуются нейтронные звезды, пульсары и черные дыры.

45. Что представляет собой нейтронная звезда?

Нейтронные звезды образуются в результате гравитационного коллапса звезд с массой, в 1,5-2,5 раза превышающей массу Солнца (если масса звезды больше, возникает черная дыра).

Внутри нейтронной звезды свободные электроны и протоны взаимно нейтрализуются, образуя нейтроны и нейтрино, что останавливает коллапс.

Этот процесс “нейтронизации” идет до тех пор, пока основная часть звезды не будет состоять из нейтронов. Плотность нейтронной звезды составляет приблизительно квинтиллион (миллиард миллиардов) килограммов на кубический метр, что превышает плотность атомного ядра.

Один кубический сантиметр вещества нейтронной звезды весил бы на Земле около миллиарда тонн. Именно вследствие своей огромной плотности нейтронные звезды чрезвычайно компактны: при массе около двух солнечных нейтронная звезда имеет радиус около 10 километров

46.Что такое черная дыра?

Черные дыры, названные так в 1967 году американским астрофизиком Джоном Уилером, не что иное, как результат гравитационного коллапса звезд, масса которых более чем в 2,5 раза превышает массу Солнца.

В этом случае внутреннее давление звезды не способно остановить ее гравитационный коллапс. Стремительно сжимаемая гравитационными силами звезда уменьшается до размеров сферы Шварцшильда, после чего никакие сигналы с поверхности звезды уже не могут выйти наружу.

Согласно общей теории относительности, наблюдатель, находящийся на большом расстоянии от сколлапсировавшей звезды, никогда не узнает, что происходит внутри сферы Шварцшильда. Он даже не увидит момента пересечения поверхностью звезды сферы Шварцшильда: из-за релятивистского замедления времени звезда для наблюдателя будет приближаться к гравитационному радиусу бесконечно долго и “застынет” при размерах, близких к гравитационному радиусу.

Размер черной дыры, а точнее – радиус сферы Шварцшильда, пропорционален ее массе. Для черной дыры с массой, равной около 10 солнечных, радиус сферы Шварцшильда составляет приблизительно 30 километров. Астрофизика не накладывает никаких ограничений на размер звезды, а потому и черная дыра может быть сколь угодно велика. Если она, например, имеет массу около 10 миллионов солнечных (возникла за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, то есть вдвое больше земной орбиты.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около 50 галактик, в центре которых, судя по косвенным признакам, имеются черные дыры массой порядка миллиарда солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра – ее массу оценивают приблизительно в 2,4 миллиона солнечных.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 100 миллионов тонн (масса астероида поперечником всего около 200 метров) и радиусом, сравнимым с размером атомного ядра. Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии.

Дополнительные сведения по п.46 находятся тут: https://ru.wikipedia.org/wiki/%D0%A7%D1%91%D1%80%D0%BD%D0%B0%D1%8F_%D0%B4%D1%8B%D1%80%D0%B0

(конец ч.2)

MIXADVERT

Be the first to comment

Leave a Reply